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The wavefunction derived in a previous calculation for the linear symmetrical H 3 system has been 
improved by the addition of new configurations. These have been constructed from the basis set of 
Slater orbitals used before, enlarged with a set of five Gaussian functions placed along the internuclear 
axis. The lowering of the energy calculated was encouraging so that this appears to provide an 
effective means of enlarging the basis set which does not lead to a great increase in the computational 
effort. 

Die Wellenfunktion, die in einer vorherigen Rechnung fiber das lineare, symmetrische H3-System 
hergeleitet wurde, ist durch Hinzunahme neuer Konfigurationen verbessert worden. Diese Wellen- 
funktion wurde mit Hilfe des Basissatzes yon Slaterorbitalen, der frfiher benutzt und um einen Satz 
von fiinf eutlang der Kernverbindungsachse plazierten GauBfunktionen erweitert wurde, konstruiert. 
Die Erniedrigung der Energie war ermutigend, so dab diese VergrSBerung des Basissatzes eine wirk- 
same Methode zu sein scheint, die nicht zu einem riesigen Anwachsen des numerischen Aufwandes 
fiihrt. 

La fonction d'onde obtenue dans un pr6c6dent calcul pour le syst6me lin6aire sym6trique H 3 a 
6t6 am61ior6e par l'addition de nouvelles configurations. Celles-ci ont 6t6 construites ~ partir des 
orbitales de Slater pr6cedemment utilis6es, augment6es de cinq fonctions gaussiennes plac6es le long 
des axes internucl6aires. L'abaissement d'6nergie calcul~ a 6t6 encourageant, ce qui montre une 
fa~on d'61argir la base sans trop augmenter l'effort de calcul. 

Introduction 

In a previous paper  I-1] a conf igurat ion in teract ion t rea tment  was performed 
for the linear, symmetr ical  H 3 system, and  the hydrogen molecule. In  each case, 
the one-electron basis set was formed from a set of one " ls"  and  three "'2p" 
Slater orbitals  centered on each nucleus. F r o m  the results obtained,  it was 
concluded that  this basis set is insufficient, in the case of the H 3 system, 
to a t ta in  a good enough approx imat ion  to the observed act ivat ion energy. 

In  a subsequent  paper  I-2] the coefficients of these result ing wavefunct ions 
were t ransformed into those which correspond to the Slater de te rminants  
between the a tomic orbitals  included in the expansion.  The relative impor tance  
of the con t r ibu t ions  of these de te rminants  was then inferred from a compar i son  
of these coefficients. Thei r  relative magni tudes  were discussed, and  the results 
were also compared  with those of some other  recent calculat ions on both  the 
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Table 1. Energy and coefficients of the "best" ground state wave functions corresponding to the sixty-two 
combinations of Slater determinants listed in Table 2 of Ref  [1], for five sets of ~qlues of ~, fl and R 

= 1 . 1 8  cr = 1 . 2  ~ = 1 . 1 8  ~ = 1 . 2  c~ = 1 . 1 8  

/~ = 1 fl = 5/6 fl = 1 /~ = 5/6 fl = 5/6 
R = 1.678 R = 1.742 R = 1.771 R = 1.833 R = 1.864 

Energy in a.u. 

- 1.6351 - 1.6377 - 1.6379 - 1.6379 - 1.6374 

Coefficients 

0.8412 0.8449 0.8244 0.8298 0.8264 
0.0404 0.0422 0.0449 0.0457 0.0482 

-0 .1323 -0 .1604  -0 .1383 -0 .1646  -0 .1656 
-0 .0138 -0 .0147  -0 .0147  -0 .0157  -0 .0164  
-0 .0288 -0 .0264  -0 .0284  -0 .0261 -0 .0259 

0.0374 0.0357 0.0359 0.0346 0.0344 
0.0053 0.0049 0.0051 0.0047 0.0047 
0.0085 0.0091 0.0083 0.0090 0.0090 

-0 .0016  -0 .0024  -0 .0016  -0 .0024  -0 .0023 
0.0039 0.0050 0.0038 0.0049 0.0049 
0.0010 0.0011 0.0010 0.0011 0.0011 
0.0004 0.0007 0.0004 0.0007 0.0007 

-0 .0177  -0 .0157  -0 .0180  -0 .0160  -0 .0160  
-0 .0534  -0 .0450  -0 .0531 -0 .0453 -0 .0450  
-0 .0141 -0 .0143  -0 .0145  -0 .0146  -0 .0146  

0.0209 0.0199 0.0213 0.0202 0.0202 
-0 .0080  -0 .0077  -0 .0080  -0 .0076  -0 .0076 
-0 .1152  -0 .1172  -0 .1236  -0 .1263 -0 .1278 

0.4530 0.4178 0.4798 0.4445 0.4443 
-0 .0353 -0 .0387  -0 .0411 -0 .0442  -0 .0458 

0.0877 0.0980 0.0989 0.1092 0.1113 
0.0699 0.0546 0.0809 0.0638 0.0631 
0.1352 0.1761 0.1171 0.1596 0.1676 
0.0317 0.0196 0.0337 0.0216 0.0280 
0.0194 0.0241 0.0193 0.0242 0.0253 

-0 .0129 -0 .0236  -0 .0113  -0 .0214  -0 .0233 
0.0104 0.0097 0.0110 0.0105 0.0112 

-0 .0114  -0 .0112  -0 .0126  -0 .0137 -0 .0154  
-0 .0038 --0,0052 -0 .0038  -0 .0052  -0 .0056 
-0 .0004  --0.0000 -0 .0005 0.0000 --0.0002 
-0 .0254  --0.0406 --0.0237 --0.0402 -0 .0412  

0.1000 0,1102 0.0956 0.1087 0.1133 
--0.0189 --0.0199 -0 .0203  -0 .0211 -0 .0221 

0.0138 0.0017 0.0160 0.0050 0.0084 
0.0215 0.0174 0.0227 0.0189 0.0195 

-0 .0017  -0 .0053 -0 .0017  -0 .0048 -0 .0044  
-0 .0132  -0 .0176  -0 .0139  -0 .0188 -0 .0196 

0.0155 0.0227 0.0156 0.0231 0.0246 
-0 .0073 -0 .0074  -0 .0083  -0 .0091 -0 .0096  

0.0073 0.0060 0.0086 0.0081 0.0092 
0.0004 -0 .0013 -0 .0002  -0 .0035 -0 .0036  

-0 .0062  -0 .0075 -0 .0059  -0 .0061 -0 .0059  
0.0250 0.0313 0.0250 0.0318 0.0310 
0.0123 0.0125 0.0130 0.0149 0.0148 

-0 .0262  -0 .0307  -0 .0257  -0 .0303 -0 .0300  
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c~ = 1.18 e = 1.2 e = 1.18 c~ = 1.2 c~ = t .18  

/~ = 1 / / =  5/6 p = 1 /~ = 5/6 /~ = 5/6 

R = 1.678 R = 1.742 R = 1.771 R = 1.833 R = 1.864 

Energy in a.u.  

- 1.6351 - 1.6377 - 1.6379 - 1.6379 - 1 .6374 

Coefficients 

- -0 .0072  - 0 . 0 0 7 6  - 0 . 0 0 7 6  - 0 . 0 0 8 4  - 0 . 0 0 8 5  

0 .0010 0 .0022 0.0008 0.0013 0 .0010 
- -0 .0022  - 0 . 0 0 2 9  - -0 .0022  - 0 . 0 0 2 9  - 0 . 0 0 3 0  

0.0153 0 .0130 0.0163 0 ,0140 0 .0140 
- 0 . 0 1 6 9  - -0 ,0149  - -0 .0176  - -0 ,0156  - -0 .0156  

- -0 .0012  - 0 , 0 0 0 9  - 0 . 0 0 1 2  - -0 ,0009  - -0 .0009  
- 0 . 0 0 4 6  - -0 .0045  - 0 , 0 0 4 8  - -0 .0047  - -0 .0048  

- 0 . 0 0 5 3  - 0 . 0 0 5 8  - 0 . 0 0 5 1  - 0 . 0 0 5 7  - 0 . 0 0 5 8  
- 0 . 0 0 1 0  - 0 . 0 0 0 5  - 0 . 0 0 1 0  - 0 . 0 0 0 6  - 0 . 0 0 0 7  
- 0 . 0 1 1 4  - 0 . 0 1 2 5  - 0 . 0 1 0 3  - 0 . 0 1 1 8  - 0 . 0 1 2 2  

- 0 . 0 0 2 0  - 0 . 0 0 2 8  - 0 . 0 0 1 8  - 0 . 0 0 2 6  - 0 . 0 0 2 8  
- 0 . 0 0 3 1  - 0 . 0 0 2 0  - 0 . 0 0 3 2  - 0 . 0 0 2 2  - 0 . 0 0 2 5  
- 0 . 0 0 0 7  - 0 . 0 0 0 6  - 0 , 0 0 0 8  - 0 . 0 0 0 7  - 0 . 0 0 0 8  

0.0025 0 .0037 0 .0022 0 .0034 0 .0036 
- 0 . 0 0 0 0  - 0 . 0 0 0 4  - 0 . 0 0 0 1  - 0 . 0 0 0 3  - 0 . 0 0 0 4  

0.0011 0.0009 0 .0012 0 ,0010 0,0012 
- 0 . 0 0 0 4  - 0 . 0 0 0 4  - 0 . 0 0 0 4  - 0 . 0 0 0 4  - 0 . 0 0 0 5  

systems. One of the weaknesses of the wavefunctions used in Ref. [1] was 
derived from the fact that the exponents in the orbitals centered on the middle 
nucleus were kept the same as those of the corresponding orbitals centered on the 
outer nuclei. 

The conclusions drawn from this examination suggested the addition of a set 
of five "ls" Gaussian functions to the previous one electron basis set: 

19i = ( 2-~) 3/'~ exp(-~r2) (1) 

where i = a, b, c, d, e, and where a, b, c stand for the positions of the three protons, 
as before, and d, e stand for the positions of the mid-points between these protons. 
The axes conventions are the same as in Ref. [ i ]  (see Fig. 1). 

This gives a total of seventeen basis functions and involves five non-linear 
parameters: c~ and fl in the exponents of the Slater orbitals, and cq = ~a = ~c, 
e2 = ea -- %, e3 = eb in the exponents of the Gaussian functions. It is clear that 
the general procedure used in Ref. [1], of forming all possible combinations of 
determinants of symmetry S~ + which were eigenfunctions of S 2 and S~ belonging 
to the eigenvalues S = S~ =�89 and using these as the basis for the molecular 
representation, would now become time-consuming and require a large store. 
Moreover, there is now the definite advantage that the ground state wavefunction 
computed in the former calculation is a good approximation to the exact one - 
although not good enough for obtaining such a relatively small quantity as the 
19" 
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activation energy. This justifies the use of this function as a fixed 7~o, to which 
further configurations formed from the new one-electron basis set could be 

variat ionally added. This was done for five chosen distances. For these, the 
coefficients of the functions 71o used, corresponding to the combinations of Slater 
determinants listed in Table 2 of Ref. [1], are listed in Table 1. These coefficients 
correspond to the values of the non-linear parameters ~ and /3 in the Slater 
orbitals which gave the nearest energies to the optimum ones of Fig. 6 of Ref. [1]. 

Calculation 

From the set of Gaussian functions (1), the simplest combinations which 
transform like irreducible representations of the point group Do~h were con- 
structed. They are: 

a + : (lga + lgc), (lga + lge), lgb ; a + : (lg~ - lgc), (lg~ - lg~). 

These were then made orthogonal to the (orthonormal) one-electron basis set 
of the previous calculation, and to one another, by a slight modification of the 
Schmidt method, The resulting coefficients of the new orthonormal set thus 
obtained, in terms of the atomic orbitals, are given in Table 2, for the five 
distances considered, Some advantages that this method presented will be 
mentioned in the last section. 

The next stage in this calculation was the construction, from this set of 
orthonormal orbitals, of the set of Slater determinants which were variationally 
added to the best computed ~o of the previous calculation. These configurations 
were obtained by making substitutions in determinants forming ~v0, using the 
new orbitals with the proper symmetry. Combinations of these determinants 
were then built so as to be eigenfunctions of S z and S~ belonging to the eigen- 
value 1 besides being of Z + symmetry. These combinations are given in Table 3; 
their choice is explained in the next paragraph. 

If v;o were the best single determinantal wavefunction, single substitutions in 
this function would have no effect, because of Brillouin's theorem, From the 
conclusions of Ref. [1] the basis set of Slater orbitals which was used to construct 
~o is not sufficient for the attainment of a close enough approximation 1o the best 
determinant. Therefore, we would like to introduce single substitutions into the 
best possible determinant using this atomic basis set. However, there is no 
explicit best determinant in the expansion of ~o- Consequently, we introduced 
single substitutions in the determinants which form ~vo and have relatively large 
coefficients. Moreover, the introduction of these additional determinants will 
also increase the correlation of the wavefunction. Only single substitutions were 
introduced in the present calculation. Configurations formed from double (and 
triple) substitutions will then introduce further correlation into the wavefunction, 
and will, therefore, also be important. The use of single substitutions has the 
additional advantage of reducing the computational effort. Double and triple 
substitutions will require more effort. Because of this, and because of their large 
number, the introduction of these configurations will require a careful, more 
discriminatory analysis than the one carried out in this calculation. 
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Table  2. Coef f ic ien ts  in expres s ions  f o r  tpl ... ~Pl 7 in terms  o f  S a ... 2px A .. .  ga etc. f o r  (a) c~ = 1.18, fl = 1, 
R = 1.678; (b) c~ = 1.2, fl = 5/6, R = 1.742; (c) c~ = 1.18, fl = 1, R = 1.771; (d) c~ = 1.2, fl = 5/6, R = 1.833; 

(e) c~ = 1.118, fl = 5/6, R = 1.864 (see Ref. [1] and  [21). 
In 1, 2, 12, 13, 14 and  15, S a = So, 2p~A = -2pzo ,  g,  = gc and  gd =- ge 
In 3, 10, 11, 16 and  17, S a = - S o ,  2pz A = 2p~c, g ,  = - g o  and  gd = -- 0~ 
In 4 and  5, 2p~., = 2p~,, and  in  6, 2px A = - 2p,o 

(a) c~ = 1.18 fl = 1 R = 1.678 
(b) e = 1.2 fl = 5/6 R = 1.742 
(c) c~ = 1.18 fl = 1 R = 1.771 
(d) e = 1.2 fl = 5/6 R = 1.833 
(e) ~ = 1.18 fl = 5/6 R = 1.864 

Sa,  ( •  So) S B 2p~A, ( •  2pzc) 2p~, 

2. 

10. 

11. 

12. 

(a) 0.2915 0.2282 0.3212 0 
(b) 0.2957 0.2275 0.3224 0 
(c) 0.2847 0.2314 0.3329 0 
(d)-(e) 0.2873 0.2294 0.3346 0 

(a) - 1.0394 2.5625 - 0.8768 0 
(b) - 0 . 8 4 7 3  2.2388 - 0 . 8 0 2 4  0 
(c) - 0 . 9 5 2 3  2.3970 - 0 . 8 5 2 0  0 
(d)-(e) - 0 . 7 8 3 1  2.1256 - 0 . 7 8 4 8  0 

(a) 0.4058 0 - 0.2769 - 0.3018 
(b) 0.3728 0 - 0.2952 - 0.2891 
(c) ' 0.4247 0 - 0.2577 - 0.3061 
(d)-(e)  0.3904 0 - 0.2808 - 0.2937 

(a) 0.3328 0 0.9250 - 0.4012 
(b) 0.5283 0 0.9474 - 0.2859 
(c) 0.2714 0 0.8974 - 0 . 3 7 9 1  
(d)-(e) 0.4576 0 0.9367 - 0.2872 

(a) 2.1912 0 0.3503 2.6252 
(b) 1.6876 0 - 0.2174 2.3980 
(c) 2.0725 0 0.4336 2.5102 
(d)-(e) 1.6323 0 - 0 . 1 0 2 1  2.2677 

(a) - 0.5457 - 0.0418 0.5248 0 
(b) - 0 . 5 7 5 9  - 0 . 0 2 2 9  0.5444 0 
(c) - 0 . 5 5 3 9  - 0 . 0 4 1 5  0.5025 0 
(d)-(e)  - 0 . 5 8 2 9  - 0 . 0 2 3 9  0.5169 0 

2p~,,,, (2py.,), 2p~,B (2pr~,) 
( +  2p:,), ( •  2p~) 

4(7). (a) 0.4685 0.2730 
(b) 0.4555 0.2627 
(c) 0.4749 0.2772 
(d)-(e) 0.4604 0.2668 

5(8). (a) - 1.1702 2.0086 
(b) - 1.3893 2.4087 
(c) - 1.0909 1.8687 
(d)-(e) - 1.2959 2.2362 

6(9). (a) 0.8410 0 
(b) 0.8931 0 
(c) 0.8224 0 
(d)-(e) 0.8709 0 
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Table 2 (continued) 

SA,(+-Sc) SB 2PzA, (• 2PJ 2P~B g,,(• gd,(• 9b 

13. (a) -2.5761 0.1493 -0.0018 0 2.7447 0 0 
(b) -2.5490 0.2590 0.0079 0 2.6629 0 0 
(c) -2.5673 0.3914 -0.0572 0 2.6393 0 0 
(d) -2.6261 0.3308 -0.0080 0 2.7077 0 0 
(e) -2.5444 0.4250 -0.0323 0 2.5957 0 0 

14. (a) 1.4808 -1.8586 -0.1708 0 -1.8127 1.6006 0 
(b) 1.7141 -2.3103 -0.0241 0 -2.0044 1.7054 0 
(c) 1.6970 -2.1830 -0.2059 0 -2.1255 1.8321 0 
(d) 1.6449 -2.1658 -0.0521 0 -1.9730 1.6757 0 
~) 1.7084 -2.2245 -0.0263 0 -2.0006 1.6628 0 

15. (a) -4.9139 -4.7126 -1.1021 0 2.0551 2.3775 7.1810 
(b) -5.0484 -3.0069 -0.7930 0 2.8663 1.6156 5.4690 
(c) -4.9350 -4.1206 -1.1273 0 2.1523 2.2706 6.5551 
(d) -4.7898 -2.4284 -0.7582 0 2.8234 1.3656 4.8432 
(e) -5.0961 -2.3602 -0.8857 0 2.9814 1.2926 5.2982 

16. (a) -0.9296 0 -1.1349 1.1449 0 1.8490 0 
(b) -0.7950 0 -1.0509 1.1311 0 1.6145 0 
(c) -0.9038 0 - 1.1290 1.2471 0 1.9745 0 
(d) -0.6922 0 -0.9858 1.1012 0 1.5520 0 
(e) -0.6507 0 -0.9552 1.0684 0 1.4904 0 

17. (a) -4.4058 0 -0.4822 -0.3126 3 .8662  -0.1905 0 
(b) -4.9861 0 -0.4896 -0.7853 4 .2241 -0.3561 0 
(c) -4.5284 0 -0.4073 -0.8441 3 .9117  -0.5098 0 
(d) -4.9230 0 -0.4493 -0.8698 4 .2096  -0.3924 0 
(e) -5.1759 0 -0.4810 - 1.1319 4 .2892  -0.4348 0 

As in the  p rev ious  ca lcula t ion ,  the  H a m i l t o n i a n  mat r ix  was set up in the 
r ep resen ta t ion  chosen,  and  d i agona l i zed  by  the Jacob i  method .  The  i m p o r t a n c e  
of  the  va r i a t i on  of  the  non - l i nea r  p a r a m e t e r s  el  = e ,  = ec, c~2 = ed = ~e ; 0~3 = ~b 
in the  G a u s s i a n  o rb i t a l s  (1) was also s tudied.  The  scal ing technique  used in 
Ref. [1]  was no t  useful in this  case, because  the pa r a me te r s  c~ and /3  in the Slater  
orbi ta ls ,  and  the nuc lear  conf igura t ion  had  to be kep t  fixed dur ing  each 
calcula t ion.  As the  c o m p u t a t i o n  of  the  necessary  integrals  no  longer  p resen ted  
the difficulties encoun te red  in Ref. [1],  a m o r e  s t r a igh t - fo rward  m e t h o d  could  
be used. 

The  energy was also cons ide red  as a "dens i ty"  funct ion defined in p a r a m e t e r  
space of  co -o rd ina t e s  cq, c%, e3. In  o rde r  to  f ind the  abso lu te  m i n i m u m  of  this 
"dens i ty"  a s tepwise i t e r a t ion  m e t h o d  wou ld  have been too  slow, if the va r i a t ion  
of  the  "dens i ty"  nea r  this  m i n i m u m  was as smal l  as expected.  A faster p r o c e d u r e  
wou ld  then  be a m e t h o d  of  descent .  This  would ,  however ,  involve  a p roh ib i t ive  
a m o u n t  of  compu ta t i on .  A s imple  a p p r o x i m a t i o n  to  it which was found  to be 
sa t i s fac tory  was m a d e  by  cons ider ing  each s ta r t ing  po in t  as the  o r thocen t re  of  a 
regula r  t e t r ahedron ,  and  using the differences in the dens i ty  f rom this po in t  to 
the  vertices,  in o rde r  to  f ind a pa th  of  descent .  A b o u t  two to four  cycles of  this  
p r o c e d u r e  (with three  to  four  steps a long  the "descent"  pa th)  gave the m i n i m u m  
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Table 3. Combinations of Slater determinants built from the basis set lpi defined in Table 2 

(2~/5) 

( 1 ~ 2 )  

S. (2/I/6) 

(2/I/6) 

10. 

(2/~) 
( 1 / ~ )  

(vV ) 

15. (2/gg) 
(1/V i) 
(2/V~) 
(1~2) 
(2/~) 

20. ( 1 / ~ )  

o/I/i) 

25. (2/]/6) 

{1/1/2) 
(2/~) 

30. (1/I/~) 

{2/[/6) 

(2~/6) 

{1/V~) 
35. (2/I/6) 

(1/1A) 
(2/1/~) 
(*/~) 
(2/1/6) 

40. (l/l/i) 
(2/~) 
( l /V2) 
(20/~) 

12 12 16 

12 12 17 

11 1 13 

11 13 1 

11 1 14 

11 14 1 

11 1 15 

11 15 1 

1 1 16 

1 1 17 

3 1 13 

3 13 1 

3 1 14 

3 14 1 

3 1 15 

3 15 1 

2 1 16 

2 16 1 

2 1 17 

2 17 1 

3 2 13 

3 13 2 

3 2 14 

3 14 2 

3 2 15 

3 15 2 

12 1 16 

12 16 1 

12 1 17 

12 17 1 

3 12 13 

3 13 12 

3 12 14 

3 14 12 

3 12 15 

3 15 12 

2 12 16 

2 16 12 

2 12 17 

2 17 12 

10 1 13 

10 13 1 

10 1 14 

10 14 1 

+ o / ~ )  
- ( 1 /1 /2  ) 

+ (l /V6) 

- (l /V2) 
+ ( 1 / ~ )  

- ( 1 / ~ 2 )  

+ ( 1 / ~ )  

+ (1/Vg) 
- ( 1 / ~ )  

+ (1/1/6) 
- ( 1 / ~ )  

+ O/V6) 

+ (l /V6) 

- ( 1 / ~ )  
+ 0/~6) 
- ( l /V2) 
+ (i/V~) 
-- (1/~/2) 

+ (i/l/6) 

+ (VV6) 
-- ( 1 / ~ )  

+ (1/~/6) 

- (1 / ] / 2 )  

+ (1/V~) 

+ o/Vg) 

+ 0 / ~ )  
- (1 /~ /2)  

+ O/g6) 

+ 0/1/6) 
- o/V2) 
+ (1/~/6) 

- o/V ) 
+ (l /V6) 

- (vV~) 

11 13 1 

1 11 13 

11 14 1 

1 11 14 

11 15 1 

1 11 15 

3 13 1 

1 3 13 

3 14 1 

1 3 14 

3 15 1 

1 3 15 

2 16 1 

1 2 16 

2 17 1 

1 2 17 

3 13 2 

2 3 13 

3 14 2 

2 3 14 

3 15 2 

2 3 15 

12 16 1 

1 12 16 

12 17 1 

1 12 17 

3 13 12 

12 3 13 

3 14 12 

12 3 14 

3 15 12 

12 3 15 

2 16 12 

12 2 16 

2 17 12 

12 2 17 

10 13 1 

1 10 13 

10 14 1 

1 10 14 

+ ( 1 / ~ )  I 1 11 13 

+ ( 1 / ~ ) 1  l 11 14 

§  1 11 15 

+ (1/~5) 1 3 13 

+ ( 1 / ~ )  1 3 14 

+ (1/~5) 1 3 15 

+ (l/V6) 1 2 16 

+ ( 1 / ~ )  1 2 17 

+ ( 1 / ~ )  2 3 13 

§ ( 1 / ~ )  2 3 14 

+ (1/i/6) 2 3 15 

+ ( l / V 6  ) 1 12 16 

+ ( 1 / ~ )  1 12 17 

+ (1 / l / 5  ) 12 3 13 

+O/pcg) D 12 3 14 

+ ( 1 / ~ )  I 12 3 15 

+ ( 1 / ~ )  I 12 2 16 

+(1/1/6) I 12 2 17 

+(1/V~)  I 1 lO 13 

+( I /V~)  I 1 10 14 
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Table 3 (continued) 

45. (2/V6) 

(2/]/6) 

(2/V~) 
so. ( u V  ~) 

(2/V6) 
(ul~) 

10 1 
10 15 
tO 12 
10 13 
10 12 
10 14 
10 12 
10 15 

15 + O/l/g) 
1 - (1/1/2) 

13 + (1/1/6) 
12 - (1/]//2) 
14 + ( la#/)  
12 - (1/V'2) 
15 +(1/]/~) 
12 - (i/~) 

10 15 
1 10 

10 13 
12 10 
10 14 
12 10 
10 15 
12 10 

1 +(1/1//6) [ 1 
15 
12 +(l/V6) I 12 
13 
12 +(1/~)  ] 12 
14 
12 + (1/V6) I 12 
15 

10 151 

10 131 

10 141 

10 151 

with an estimated accuracy of 0.000005 a.u., which is sufficient for our purposes. 
For  the first of the five distances, a smaller basis set was used for the first 
iterations, until the variation in the density was small enough. For  the other 
distances, the initial values of the parameters  were modified according to the 
values found for the previous distances. 

The resulting energies, and the coefficients for the functions ~0 used - which 
correspond to those of Table 1 - and of the new basis set of Table 3, are tabulated 
in Table 4. The total error of the calculations is believed to be of the same order 
as in the previous calculation, i.e., less than 0.0001 a.u. 

C o n c l u s i o n  

In this calculation, we have tried to remedy some of the defects found in the 
wavefunction computed in Ref. [1] for the H 3 system. We have taken the five 
wavefunctions whose coefficients are given in Table 1, for the five corresponding 
distances. These functions gave the energies nearest to the best possible ones 
obtainable using the basis set of Slater orbitals. These functions were then 
improved according to the present scheme. The basis set of Slater orbitals was 
enlarged with a set of five Gaussian functions placed along the internuclear axis, 
and configurations formed from these were chosen, as indicated in the previous 
section. 

The lowest of the energies thus obtained is -1 .6438 a.u., for the distance 
R = 1.771 a.u. This represents an improvement  of 3.7 Kcal/mole over the energy 
of the function 'P0 used for this distance. None  of the 'P0 chosen corresponds to 
the best energy interpolated from the results of the previous treatment [1]. 
A parabolic fit was not appropr ia te  for the five values of the energy obtained in 
this treatment, which were given in Table 4. If  we compare the best energy 
calculated in the first t reatment  with the lowest energy obtained in this paper  - 
which is quoted above - the improvement  is of 3.2 Kcal/mole. 

This lowest energy is still greater than that of some of the more detailed 
calculations already surveyed [2]. Nevertheless, if we take into account the effort 
involved - which was much less than in the previous calculation - the results are 
encouraging. Also, it was interesting to examine the use of a mixed set of Slater 
and Gaussian orbitals as a means of enlarging a basis set without the integration 
becoming very t ime-consuming-  which would be the case if further Slater orbitals 
formed from higher polynomials in r, x, y, and z were added. 
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Table 4. Energy and coefficients for tPo in terms of the fifty-two combinations of Slater determinants listed 
in Table 3. The five columns correspond to the five sets of values of c~ and ~ listed in Table 2 

c~ = 1.18 e = 1.2 c~ = 1.18 e = 1.2 c~ = 1.18 
/~ = 1 /~ = 5/6 /~ = 1- /~ = 5/6 /~ = 5/6 
R = 1.678 R = 1.742 R = 1.771 R = 1.833 R = 1.864 

Energy in a.u. 

- 1.6424 - 1.6433 - 1.6438 - 1.6431 - 1.6425 

Coefficients 

0.9979 0.9985 0.9984 0.9984 0.9986 
-0.0013 -0.0020 -0.0010 -0.0025 -0.0027 

0.0012 0.0006 0.0012 0.0003 0.0003 
-0.0022 -0.0035 -0.0026 -0.0038 -0.0036 
-0.0067 -0.0060 -0.0072 -0.0065 -0.0069 
-0.0028 -0.0030 -0.0027 -0.0033 -0.0029 
-0.0051 -0.0021 -0.0040 -0.0016 -0.0012 

0.0005 0.0012 0.0007 0.0018 0.0017 
0.0054 0.0047 0.0055 0.0057 0.0057 
0.0065 0.0004 0.0092 0.0030 0.0018 
0.0074 -0.0002 0.0051 -0.0005 -0.0006 
0.0288 0.0142 0.0203 0.0036 0.0118 

-0.0168 -0.0208 -0.0238 -0.0277 -0.0236 
0.0298 0.0178 0.0184 0.0109 0.0146 
0.0006 0.0022 -0.0039 -0.0020 0.0009 

-0.0113 0.0001 -0.0049 0.0076 0.0016 
0.0037 0.0079 0.0080 0.0127 0.0089 
0.0058 0.0066 0.0062 0.0054 0.0054 

-0.0011 -0.0024 -0.0011 -0.0022 -0.0020 
0.0009 -0.0002 0.0005 -0.0007 -0.0006 

-0.0002 0.0005 0.0002 0.0009 0.0007 
-0.0004 -0.0050 -0.0017 -0.0067 -0.0057 
-0.0052 -0,0066 -0.0062 -0.0076 -0.0075 
-0.0017 -0,0041 -0.0024 -0.0045 -0.0033 
-0.0031 -0,0025 -0.0030 -0.0026 -0.0021 

0.0015 0.0046 0.0025 0.0063 0,0051 
0.0027 0.0035 0.0033 0.0040 0,0036 

-0.0009 0.0029 -0.0023 0.0021 0.0030 
-0.0007 -0.0027 0.0001 -0.0030 -0.0033 
-0.0013 0.0016 -0.0006 0.0023 0.0022 

0.0052 0.0034 0.0049 0.0031 0.0029 
-0.0154 -0.0096 -0.0140 -0.0071 -0.0098 
--0.0016 0.0016 0.0016 0.0054 0.0029 
--0.0197 -0.0131 --0.0164 --0.0114 --0.0120 
-0.0109 --0.0083 -0.0082 -0.0064 -0.0075 

0.0073 0.0039 0.0058 0.0024 0.0040 
0.0027 0.0005 0.0008 --0.0016 0.0003 

-0.0027 --0.0024 --0.0031 -0.0021 -0.0021 
0.0005 0.0012 0.0006 0.0009 0.0007 

-0.0006 -0.0001 -0.0004 0.0003 0.0003 
-0.0002 -0.0007 -0.0004 -0.0009 -0.0008 
-0.0009 -0.0053 -0.0026 -0.0072 -0.0055 
-0.0204 -0.0267 -0.0215 -0.0261 -0.0260 
-0,0012 -0.0031 -0.0025 -0.0036 -0.0021 
-0.0164 -0.0152 -0.0148 -0.0154 -0.0138 
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T a b l e  4 ( con t inued)  

= 1.18 e = 1.2 e = 1.18 c~ = 1.2 e = 1.18 

fl = 1 fl = 5 / 6  fl = 1 fl = 5 / 6  fl = 5 / 6  
R = 1.678 R = 1.742 R = 1.771 R = 1.833 R = 1.864 

E n e r g y  in a.u. 

- 1.6424 - 1.6433 - 1.6438 - 1.6431 - 1.6425 

Coeff ic ients  

0 .0013 0.0048 0 .0023 0 .0054 0 .0039 
0 .0079 0.0111 0 .0083 0 .0126 0.0115 

- -0 .0014  0 .0007 - 0 . 0 0 0 7  0 .0016 0.0008 
0 .0086 0 .0107 0.0103 0 .0119 0.0116 

- -0 .0023  - -0 .0013  - - 0 . 0 0 1 4  - 0 . 0 0 1 0  - 0 . 0 0 1 5  

0.0065 0.0055 0 .0068 0 .0064 0 .0056 
0 .0004 - 0 . 0 0 0 8  - 0 . 0 0 0 1  - -0 .0008  - 0 . 0 0 0 3  

- 0 . 0 0 2 9  - 0 . 0 0 4 1  - 0 . 0 0 3 6  - 0 . 0 0 5 3  - 0 . 0 0 4 6  

As in the previous calculation, the coefficients of the resulting wavefunctions 
were transformed into those which correspond to ~P0 and to the Slater deter- 
minants between the atomic orbitals. These included determinants which involved 
Gaussian orbitals, but also determinants involving only Slater orbitals. Because 
of this, and because of the increasing complexity of the wavefunction, it was found 
very difficult to interpret its form. The most important determinants were those 
which involve the Gaussian orbital centered on the middle nucleus. These probably 
partially compensate the weakness in the previous calculation which was men- 
tioned in the first section. Most of the determinants have very small coefficients, 
and it is quite possible that some of them can be neglected with a minimal change 
in the energy; this would be of importance if the molecular basis set is further 
enlarged. 

Appendix 

Computational Details 

The whole of this calculation was carried out with the Titan computer in 
Cambridge. The integration method used was a Gaussian expansion for the 
Slater orbitals. For this, the coefficients given by Huzinaga et al. [3] were used. 
The general formulae given there were applied to the special cases of Is and 2p 
functions. The integrals between Gaussian orbitals were then obtained in terms 
of the auxiliary function defined in Ref. [3], and the one-dimensional integral 

1 

Fro(t) = ~ u2me -tu~ du (t > 0) (2) 
o 

where m is at most equal to two for a nuclear attraction integral, and at most 
four for an electron repulsion integral between ls and 2p Gaussian orbitals. In 
order to have an estimate of the error in its evaluation, the asymptotic expansion 
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given by Shavitt [4] for the 

4~m(t) = 

was used. An upper bound 
truncation in the expansion: 

complementary function of F,.(t): 

co F(m + ~) 
u2me -'"2 du = F,,(t) + 2tin+------ T- (3) 

1 

to the error in ~m is given by the first term after 

- 2 m  - I ( 2 m  - 1)  ( 2 m  - 3 )  
~m(t ) = e- j_  (1 + - -  + + ..- (4) 

2t \ 2t (2t) 2 ] ' 

This gives an upper bound from (3) to the corresponding error in F,,(t). This 
asymptotic expansion was used for small intervals of t, for a wide range of this 
variable. The series was truncated whenever the error bound computed from the 
next term to be added was less than 10 -8 , or when the terms began to increase. 
This last case was considered a failure for this method to be used for comparison 
purposes. F rom this, it was found to be useful for values of t > 8. For  0 < t < 8, 
the method used to obtain an estimate of the errors was chosen to be the 
successive differentiation of the Chebyshev expansion for Fo(t ). This was 
obtained from the corresponding expansion for eft(x) given by Clenshaw [5]: 

2-1 e r f ( ~ )  8 ,~'2~ - 2, (5) Fo(t) = =- = S,a~ ) T ~ y t -  1 

for 0 _< t _< 16, where a~ ~ = ~ -  8 a2,. Although single length arithmetic (11 digits) 

was used throughout, and the differentiation of a truncated power series can be 
very unreliable, the procedure was seen to be valid for the accuracy required for 
m up to ten (all the methods were written for these values), by comparison with 
the asymptotic expansion (4), for the range t = 8 to t = 16. As the amplitudes of 
the error oscillations of the truncated Chebyshev expansions are practically 
constant throughout their range of validity [6], this method was considered 
acceptable for the range t = 0 to t = 8. 

Finally, we used the recursion formula given in Ref. [4]: 

1 
Fro(t) = 2m +----T (2t Fm +1 (t) + e- t )  (6) 

assuming that F,~ vanishes for a high enough value of m, and the inverse relation, 
starting with a value of F o (t) with the necessary accuracy - by using the necessary 
terms in the expansion (6). The ranges of each method were chosen so as to 
optimize the corresponding computation time, for all five values of m, and with 
an error estimate of less than 10-8, by comparison with the methods previously 
described. 

The method employing recursion formula (6) was used for t = 0 to a value 
of t ranging from 3 to 5, depending on its turn on the value of m. The number of 
times this formula had to be used increased very rapidly with t and was taken 
to be a simple stepfunction of t and m. The speed was considerably increased over 
that found using a fixed range of t and a minimum upper limit to this number of 
recursions. For  t = 3 or 5 to t = 16, the inverse formula was used; the number of 
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terms in (5) was not sensitive to the values of t and m, and was finally taken to be 
17 for this range. For  t greater than 16, we could use Clenshaw's expansion for 
the complementary  error function for the computat ion of F0(0; this converges 
very rapidly, and five terms were sufficient for the necessary accuracy for all 
values of m. However,  we can also use the fact that erf(Vt ) = 1 to 11 digits for 
t >  19.5. 

This integration p rogram was used to check the integrals between Slater 
orbitals used during the previous calculation (Ref. [1]) and stored on magnetic 
tape. Using eight-term expansions, the differences were of the order to 0.00001 a.u. 
The computat ion of these integrals involving only Slater orbitals and their 
t ransformation to the corresponding ones for the or thonormal  basis set was not 
necessary. This was because of the method used to orthogonalize the orbitals, 
and because these sets of t ransformed integrals had also been stored on 
magnetic tape during the previous calculation. This permitted the use of eight- 
term expansions for the Slater orbitals, for the rest of the necessary integrals. 
These also involved Gaussian functions, and no checks with tabulated values were 
available, but because of the method used, their accuracy was assumed to be at 
least as good as that of the other integrals. 

A program was then written which assembled the small number  of integrals 
required, and expanded this set into the smallest possible set which took no 
account of the symmetry of the system. The recurrence coefficients of the Schmidt 
process were then computed, and the recursion formulae derived from these used 
to transform the integrals into those corresponding to the or thonormal  basis 
set. This procedure was preferred over the matrix transformation used in the 
previous calculation, as all the integrals did not have to be transformed. The 
matrix t ransformation method was nevertheless used for checking purposes, for 
a smaller basis set, and the two sets of transformed integrals proved to be 
identical to at least 4 digits. The coefficients of  the wavefunction ~g0 were 
permanently stored, as well as the integrals from the previous calculation. The 
computat ion of the first row (and column) of the Hamiltonian matrix was 
carried out separately from the rest. This matrix was then diagonalized, and the 
nuclear repulsion terms added to the eigenvalues. 
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